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Abstract 
This paper will outline an independent ribbon climber 

design for the first construction climber on the space 
elevator.  Principals of this design procedure will be 
applicable to a climber of any mass, and the intent of the 
design is to be scalable.  The design will use the baseline 
climber mass distribution outlined in “The Space 
Elevator” by Edwards and Westling as a starting point, 
but the details of the traction mechanism differ 
fundamentally from that shown in the book for reasons 
described.  

Overall dimensions of the elevator ribbon shown in the 
book will also be assumed.  The paper will focus on two 
possible failure modes of the wheels and axles of the 
drive train driven by tribological and fatigue 
considerations that will have to be overcome in a 
successful climber design. 

A complete preliminary design is not possible at this 
time because critical pieces of information about the 
mechanical properties of the CNT ribbon material are not 
known.  However, estimates can be made of the impact on 
the design of parameters having possible ranges of 
values, such as the coefficient of friction between the 
traction drive and the ribbon. 
 
 

1. Design Assumptions 
This paper will focus on the design of the traction drive 

and associated structural components of the first 
construction climber for the space elevator as outlined in 
“The Space Elevator—a revolutionary Earth-to-space 
transportation system,” by Edwards and Westling.  The 
basic design of the traction mechanism shown in this 
paper differs fundamentally from the track and roller 
system in the book.  The traction drive shown here is a 
pinched-wheel design with two wheels forced against the 
ribbon and each other to achieve traction with the ribbon. 

 

 
 
 
The design of the ribbon climber in this paper assumes 

the mass distribution from Table 3.2 of “The Space 
Elevator”. 

One goal of the paper is to determine if this preliminary 
design is within the combined mass budget shown in the 
table of less than 233 kg.  (The entire structure budget 
cannot be consumed by the traction drive system.) 

 
Table 1: Mass distribution of components of the 
first construction climber 

Component Mass (kg) 
Ribbon 520 

Attitude Control 18 
Command 18 
Structure 64 

Thermal Control 36 
Ribbon Splicing 27 

Power Control 27 
Photovoltaic Arrays 

(12 m2, 100 kW) 
21 

Motors (100 kW) 127 
Track and Rollers 42 

TOTAL 900 
 
A simplified system model is shown in Figure 1.  The 

design starts with the minimal configuration of just two 
wheels.  Criteria will be given for when additional pairs of 
wheels will be required.  The transmission shown in 
Figure 1 is a placeholder because if a motor can be found 
that has the desired torque-speed curve, a direct drive is 
preferred.  If a transmission is found to be necessary, the 
efficiency of the drive will be degraded by the presence of 
mechanical gearing.  Not shown is a brake to allow the 



climber to stop at any altitude without requiring power to 
the motors. 

The photovoltaic array that powers the motors is not 
shown in the block diagram, but is assumed. 

 

 
Figure 1: Block diagram of the proposed climber 
system.  F is the force pinching the wheels to the 
ribbon to produce traction. 

 
 
The wheels, axles and structure of the climber in this 

design are initially assumed for the purpose of this paper 
to be made from Aluminum 6061-T6.  There are several 
reasons for this.  First, this alloy of aluminum is a readily 
available alloy commonly used in aerospace applications.  
It is commercially available in almost every form.  It has 
excellent welding, forging and cutting properties.  This 
author has greater familiarity with the fatigue 
characteristics of this alloy than those of other candidates 
such as steels, titanium and magnesium, but a detailed 
comparison needs to be made in the final design to choose 
the best material. 

 1.1 Why are tribology and fatigue important 
considerations in climber design? 

The space elevator is 100,000 km long.  The 
construction climbers must make it out to the end of the 
ribbon with as close to 100% confidence of a successful 
trip as practical.  The climbers must not have a failure that 
could damage the ribbon or prevent the next climber from 
continuing to augment the ribbon.  The simplest 
calculation one can do is to look at the total number of 
times a wheel must rotate to get to the end of the ribbon.  
If we assume a 20 inch diameter wheel (.508 m), the 
circumference of the wheel is 62.831 inches (1.596 m).  
This means that this wheel must rotate almost 63 million 
times to make it to the end of the ribbon.  This is far up 
the S-N curve for any non-ferrous material.  If the wheel 
were half that diameter, it would need to rotate twice as 
many times, or 126 million cycles. 

Rolling means fully reversed stress cycles in the axle 
and the contact surface of the wheel.  Fully reversed stress 
is the most severe type of stress leading to fatigue failure.  
Many non-ferrous alloys do not even report fatigue 
strengths for greater than 107 cycles.   

This paper will focus on two types of component 
failures associated with fatigue that could lead to 
catastrophic failure of the climber or damage to the 
ribbon.  First, the axles will be analyzed as beams in 
bending due to the force required to hold the wheels to the 
ribbon.  It will be shown that this force is inversely 
proportional to the coefficient of friction between the 
ribbon and wheel.  If the actual coefficient of friction 
between the wheels and ribbon is below a certain value, 
there may not be a real engineering material for the axles 
strong enough to avoid fatigue cracking before the end of 
the climb. 

The wheel mating surface will also be analyzed for sub-
surface stresses due to traction and the compression 
holding the wheel to the ribbon.  This type of fatigue 
failure could lead to chunks of metal separating from the 
contact surface of the wheel and potentially puncturing 
the ribbon during subsequent revolutions of the wheel. 

Tribology is the study of friction, lubrication and wear.  
The first climber has many of the mechanical 
characteristics of an electric automobile, only made much 
more complicated by the effects of vacuum and extremes 
of temperature from exposure to space.  Climbers must be 
able to survive a variety of earthly conditions while they 
are still in the atmosphere, as well as perform as a 
spacecraft once they have left the atmosphere.  Wheels 
and axles require bearings to mate with the non-rotating 
components of the climber structure.  To quote reference 
[2], “The warning must be never to use a ball-bearing in a 
space mechanism without the guidance of a space 
tribology expert.”  The design shown here will use as 
placeholders various common mechanical components 
such as bearings with the understanding that they will be 
replaced in the final design with space-worthy versions. 

Tribological considerations are the first reasons to favor 
a pinched wheel design over a tracked climber traction 
drive.  If a pinched wheel version can be made to work it 
will inherently have fewer pieces than a tracked version.  
The track represents a significant research and 
development effort to come up with a material and design 
that can flex as frequently as a climber drive requires.  
The simplest tracked drive is shown in figure 1b.  In a 
sense, the problem of traction is doubled in the simplest 
tracked design because the inner surface of the track must 
develop traction with the drive rollers, as well as getting 
traction between the elevator ribbon and track.  Existing 
tracked drives such as in tanks rely on a sprocket to drive 
the track with mating teeth around the inside of the track.  
The flexing of the track, the meshing of teeth or the 



friction between the rollers and track are all tribological 
issues that are irrelevant in the pinched wheel design. 

 

 
Figure 1b: Sketch of the simplest traction drive 
system.  The tracks would be pinched together 
by forces on the wheels as in the pinched-roller 
design. 
 

2. The mathematical model of the drive train 
and the motivation to eliminate the track 
from the track and roller drive 

A free body diagram of a wheel is shown in Figure 2. 
 

Defining terms in Figure 2: 
R = radius of the wheel 
N = normal force between ribbon and wheel 
F = applied force compressing wheel to ribbon 
T = applied torque from drive train 
mc = mass of the climber 
f = friction force between ribbon and wheel 
g(r) = gravitational drag force expressed as a function 

of r, radius from the center of the Earth 
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Figure 2: Free Body Diagram of a wheel 

 
 

Me 5.9788 10
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ω = angular velocity of the Earth about its axis 

ω 7.2929
10
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⋅=

 
J = rotary moment of inertia of wheel 

α = rotational acceleration of wheel, sec-2 

r��  = linear acceleration along ribbon 
x, y = Cartesian coordinates, y along ribbon, x 

perpendicular to face of ribbon 

θ  = Angle of rotation around the axis of the wheel, 
radians 

In applying d’Alembert’s Principle to the wheel, for 
convenience the moment is summed about the point of 
contact between the wheel and ribbon.  This eliminates 
the friction force, the wheel compressive force and the 
normal force from the equation. 

� =−−−= 0
2

)(
2

αJ
RrgmRrm

TM cc ��  (1) 

The contact is assumed to be rolling and not sliding, so 
the linear and angular positions, velocities and 
accelerations are related by the following expressions: 

θRr = , 

θ�� Rr =  and 

αθ RRr == ����   



These expressions are used to eliminate the angular 
acceleration term from equation 1.  (This model neglects 
the finite size of the zone of contact between the wheel 
and ribbon as discussed below.) 

Rearranging the terms of equation 1 and making the 
appropriate substitutions gives an equation for the torque 
required to accelerate the climber upwards with any given 
linear acceleration r�� : 
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This equation shows that for the climber to accelerate at 
a given acceleration, the larger the rotary moment of 
inertia is, the more torque is required.  J is the only term 
in this equation that can be varied by design selections.  
The mass of the climber is determined by the 
requirements of the elevator and the force of gravity is 
determined by the altitude of the climber on the ribbon. 

Every effort must be made to reduce the rotary moment 
of inertia of the drive train because the torque required to 
raise the climber is directly proportional to the power 
required.  If the power is fixed at a constant value, then 
increasing J lowers the maximum acceleration of the 
climber.  In other calculations performed by the author 
and available at 
www.bartoszekeng.com/se_calcs/ribbon_climber.htm , the 
acceleration attainable by the construction climbers 
assuming an initial laser power of 100 kW gives longer 
trip times than those quoted in The Space Elevator even 
before J is factored in.  The rotary moment of inertia of 
the climber drive will directly impact the time (and thus 
the budget) it takes to bring the elevator on-line for 
business. 

This is another motivation to look at a climber design 
that has no track.  The track adds to J without contributing 
to the traction.  As will be seen below, the traction comes 
from the pinch force between the roller pairs.  This effect 
is also true in the track and roller design as shown in 
figure 1b.  The minimal track and roller design has two 
roller pairs to circulate the track around.  The track in-
between the end roller pairs is not being compressed 
against the ribbon, compression only comes near the 
rollers.  The track in-between roller pairs cannot 
contribute significantly to the total traction making it 
superfluous and deleterious to the design. 

3. The effect of estimated coefficients of 
friction between the ribbon and wheels 

One of the numbers critical to the design of the climber 
to be determined by experiment once a sufficient quantity 
of ribbon fabric is made is the coefficient of friction 
between the fabric and the material of the wheel in contact 
with the ribbon.  Other important mechanical properties 

are the strength of the CNT fabric to resist the 
compressive stress caused by the pinched wheels and the 
wear properties that can be expected to lead to material 
being transferred from the wheel to the ribbon. 

The friction model used here is Coulomb dry friction in 
which the traction does not depend on the area of contact, 
but only on the normal force and coefficient of friction as 
given by 

Nf µ=  (3) 
where µ is the coefficient of friction.   µ may have 
different values depending on whether the contact is 
sliding (kinetic friction) or not sliding (static friction).  
The case of sliding contact is considered a failure of the 
climber’s traction, so the kinetic coefficient of friction 
will not be used in this analysis.  Climbers must operate in 
the regime up to the point of impending sliding and no 
further, so anytime the coefficient of friction appears in an 
equation, it is understood to be the static coefficient of 
friction.   

The first calculation looks at the static case where the 
wheel is stationary on the ribbon and the applied torque is 
just the braking torque required to keep the climber from 
rolling down the ribbon.  In this case the inertial terms all 
go to zero. 

By summing the forces in the x and y directions, we get 
the relationship between the weight of the climber, the 
force applied to compress the wheels together and the 
friction force available for traction. 
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Rearranging (4) gives 
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f c=  (6) 

 
The traction force between the ribbon and the wheel is 

equal to half the weight of the climber.  Rearranging (5) 
gives F = N, the normal force coming from the second 
wheel in the wheel pair (through the ribbon) is balanced 
by the applied force on the first wheel.   

Equation (6) describes the condition in which the 
weight of the climber is balanced by the friction force, but 
the friction force required is less than that calculated by 
equation (3).  The condition of impending sliding is 
required to allow equation (3) to be used with equation 
(6). Substituting F for N in (3) gives f = µF which gives 
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In the case of a stationary climber, the amount that the 

wheels must be compressed together to get just enough 
friction to hold the climber in place is directly 
proportional to half the weight of the climber (assuming 
the weight is evenly distributed on both wheels) and 
inversely proportional to the coefficient of friction 
between the wheel and ribbon.  This compressive force on 
the wheel must be considered a minimum and a 
conservative design will allow for the application of a 
higher force on the wheels. 

Looking at the case of the climber starting out near the 
surface of the earth, mc = 900 kg and g(r) = 9.8 m/sec2 .  
The force required to hold up the climber drops off as 
gravity does with altitude, so the highest force necessary 
to support the climber is near the surface of the earth. 

The theoretical range of values for the coefficient of 
friction is from zero to infinity, but the range encountered 
in normal practice is much more limited.  Values of 
friction greater than 1.0 are possible but generally imply 
some sort of adhesion between the contacting surfaces and 
are not usual in the context of rolling contact.  Typical 
coefficients of friction for dry bearing materials are from 
.01 to .1.  A wide variety of engineering materials have 
coefficients that lie in the range between .1 and 1.0.   

Figure 3 shows a graph of the force required between 
wheels as a function of the coefficient of friction.  The 
force values are given in pound force (lbf). 

If the measured friction coefficient is found to be near a 
typical value like .1, then the force required on the wheel 
to be at the point of impending sliding is about ten 
thousand pounds or five tons for the lightest climber.  
This force has a significant impact on the axles of the 
wheels and bounds the size of the actuators that apply this 
force to the axles.  A measured value for µ significantly 
less than .1 will have a deleterious effect on the design, 
effectively making the ribbon too slippery for traction 
climbing. 

 
Figure 3: Graph of Force required between 
wheels (lbf) vs. coefficient of friction for the first 
construction climber. 

 
 

4. Analyzing the axles as cantilever beams 
The width of the pilot ribbon is widest at GEO and is 

calculated to be slightly less than 14 inches wide (35.5 
cm).  The actuators that compress the wheels around the 
ribbon must be outside the widest part of the ribbon and 
sufficiently far away from its edge that they would never 
scrape the edge of the ribbon.  A reasonable first guess at 
the length of an axle from the center of the first climber’s 
wheel would be 14 inches.  This shaft can be modeled as a 
cantilever beam with one end fixed to the center of the 
wheel and the other free.  The force applied to the wheel 
calculated above is evenly distributed on the axle on both 
sides of the wheel, so the force the axle shaft on one side 
of the wheel sees is half the total force on the wheel. 

The maximum bending stress in a cantilever occurs at 
the base of the cantilever next to the fixed end constraint.  
This stress is calculated from: 

 

fb
M Raxle⋅

Ixx
=  (8)

 
 
where: 

fb = bending stress at point of maximum bending 
moment, psi 

M = maximum bending moment, lbf-in 
M Faxle l⋅=

 
l = 14 in, the length of the cantilever 
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(µ = .1 assumed) 

Faxle = 4.96 x 103 lbf 
Raxle = radius of the axle, inches 
Ixx = area moment of inertia of the shaft cross-section, 

in4 

Ixx
1
4
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For the axle shaft model as described, the maximum 

bending stress at the base of the cantilever can be 
expressed as a function of the axle radius.  Figure 4 shows 
a graph of the bending stress as a function of axle radius. 

 

 
Figure 4: Graph of maximum axle bending stress 
(psi) vs. axle radius (in) for µµµµ = .1 

 
For a complete stress analysis, the bending stress must 

also be combined with the torsional stress due to the 
braking and driving torques.  Calculating the torsional 
stress requires detailed knowledge of the acceleration 
profile of the climber which is not complete as of this 
writing.  This calculation is just a quick estimate of the 
minimum size of the wheel axle required just to absorb 
the pinch-force between the wheels. 

To find the minimum axle radius, the calculated 
bending stress must be compared against an allowable 
stress for fatigue.  Most sources quote allowable stresses 
for fatigue at 50% confidence to failure.  This means that 
if a device is run at the quoted stress level there is a 50% 
chance of component failure by fatigue after the quoted 
number of stress cycles.  The usual fatigue allowable for 
fully reversed bending in Al 6061-T6 is given as 14 ksi at 
5 x 107 stress cycles.  As stated earlier, 50% confidence is 
unacceptable.  The author has performed an extensive 

fatigue analysis on a pulsed power device for the 
MiniBooNE experiment at the Fermi National Accelerator 
Laboratory in Batavia, IL.  In unpublished work the 
conservative stress allowable calculated for 97.5% 
confidence was found to be 6.5 ksi for cycle life greater 
than 108 cycles of fully reversed stress in Aluminum 
6061-T6.  If this is used as the allowable stress in the 
graph in Figure 4, then the axle radius must be larger than 
2.4 inches.   

If the coefficient of friction between the wheel and 
ribbon were experimentally found to be .01 instead of .1, 
the force required on the axle would be 10 times greater 
and the stress would be 10 times greater.  The axle radius 
would then have to be larger than 5.15 inches to avoid 
fatigue failure.  This corresponds to a 10.3 inch diameter 
shaft passing through a 20 inch diameter wheel.  
Coefficients of friction below .01 would eventually force 
the shaft to be larger in diameter than the wheel, an 
absurdity. 

Another important check on the condition of the axle 
shaft is to calculate its deflection.  This deflection causes 
the end of the shaft to have both an angular and transverse 
offset from the nominal central axis of the shaft.  In the 
final design of the climber a shaft coupling will need to be 
selected that can absorb angular and transverse offsets 
without introducing backlash into the system. 

Assuming µ = .1 and the force required at this friction 
level, the deflection of a 2.4 inch radius shaft 14 inches 
long is calculated from the following: 

dmax
Faxle l

3⋅

3 Eal⋅ Ixx⋅
=  (9)

 
 
where: 

dmax = maximum deflection of the end of the shaft 
Faxle = 4.96 x 103 lbf 
Eal = 10.3 x 106 psi  
Ixx = 26.1 in4 (for Raxle = 2.4 in) 

 
which gives a maximum shaft deflection of : 
 
dmax = .017 in 
 
This deflection may be large enough to choose 

deflection as the sizing criterion for the shaft once the 
complete stress criterion is satisfied.  If the fatigue 
strength of the shaft is found to be adequate for a 
particular radius but the deflection is too large to 
accommodate in the drive train, the shaft would have to 
be made larger to limit the deflection to an acceptable 
value. 



From a design strategy perspective, if the stress in the 
axle had proven too great given the assumed friction 
coefficient, the only solution given the free body diagram 
of the wheel is to lower the weight of the climber a wheel 
pair must carry.  Since the mass of the climber is 
determined by other considerations and cannot be 
arbitrarily reduced, the way to lower the load on a wheel 
pair is to add more wheel pairs and assume they can carry 
the weight of the climber equally distributed between 
them.  (This strategy is similar to that of freight trains 
where additional engines are added as the number of rail 
cars increases.)  A climber with more than a single wheel 
pair has a significant increase in the complexity of the 
torque control system, hence the focus on the simplest 
traction drive system. 

The conclusion from this analysis is that at a coefficient 
of friction of .1 or greater, a single roller pair can be 
compressed together with a force that generates sufficient 
traction with the ribbon, and an axle shaft size can 
probably be found that satisfies a complete fatigue stress 
criterion.  The next calculation will look at whether this 
wheel compressive force is low enough to avoid fatigue 
spallation of the rolling surface of the wheel. 

5. Calculating Hertzian contact stress in the 
wheels and the area of contact 

The first comment to be made about this subject is that 
the study of the stress state in the zone of contact between 
two solid bodies is very complex.  A rigorous and 
complete analytical treatment of the sub-surface stress in 
the wheels is far larger than this paper can report.  What 
will be presented is a shortcut based on contact mechanics 
and the maximum shear stress theory that is useful in 
design to bound the nature of the problem.  The final 
design of the drive train will involve a lengthy finite 
element analysis of the wheels and axles to insure the 
design against failure. 

Maximum shear stress theory gives the condition that 
the maximum shear stress must be less than or equal to 
half of the tensile yield stress of the material to avoid 
shear failure.  In fatigue, this condition is modified by 
replacing the tensile yield stress with the fatigue allowable 
stress which is always a lower number.  Mathematically 
this is expressed as: 

τmax
σf
2

≤  (10) 

where: 

τmax = maximum shear stress 
σf = fatigue stress allowable = 6.5 ksi 

When two cylinders whose axes are parallel are in 
contact and pressed together, the zone of contact changes 
from a line parallel to the central axes to a flattened 

rectangular area as the material of the wheels elastically 
deforms from the force of contact.  Figure 5 introduces a 
new coordinate system to describe the zone of contact.  
The half-width of the zone of contact is designated by b, 
and is shown greatly exaggerated in size with respect to 
the diameter of the cylinders. 

The stress state in the zone of contact changes as 
traction is applied, but a useful number is the maximum 
pressure in the zone for the case without traction.  The 
maximum pressure occurs at the origin of the coordinate 
system shown in figure 5 and is calculated from: 

po
2 F⋅

π b⋅ l⋅
=  (11) 

where: 
po = maximum pressure at the origin of the zone of 

contact 
F = force between the two wheels = 9.921 x 103 lbf 

for µ = .1 
b = half width of the zone of contact 
l = length of the contact zone parallel to the axis of 

the wheels = 6 inches for the first climber 
The equation for b for the case of two cylinders of 

equal diameter and made of the same material is: 

b
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where: 

d = initial guess value for the diameter of the wheel = 
20 in 

ν = Poisson’s ratio for aluminum = .334 
This equation completely neglects the contribution of 

the ribbon fabric to the stress state in the zone of contact.  
This was considered reasonable given the thin-ness of the 
ribbon fabric and the lack of information about its 
modulus and Poisson’s ratio.  Experimentation is needed 
to validate this assumption. 

 



 
Figure 5: Sketch of two identical cylinders in 
contact.  The hatched area is the flattened zone 
of contact. 

 
Given the above values to evaluate the equations, b and 

po are found to be: 
 
b = .043 in  and  po = 24.7 ksi 
 
As discussed in reference [9], the maximum shear stress 

in the zone of contact occurs below the surface and is the 
τyz component.  Its value maximizes at b inches below the 
surface of contact and is given as: 

 
τmax =  .3po (13) 

 
which evaluates to: 

 
τmax =  7.41 ksi 
 

Applying maximum shear stress theory as shown in 
equation 10,  

 
σf/2 = 3.25 ksi 
 

The condition of equation 10 is violated because the 
calculated maximum shear stress is 2.28 times greater 
than the allowable shear stress.  If we apply the 50% 
confidence value for the fatigue allowable, or 14 ksi, then 
the shear stress allowable would still only be 7 ksi, less 
than the calculated allowable.  This indicates that there 
would be a greater than 50% chance of a surface 
spallation failure at 5 x 107 revolutions of the wheels, if 
the wheels are 20 inches in diameter and made of 
aluminum alloy 6061-T6. 

There are several possible ways to bring the maximum 
pressure in the zone of contact down.  From inspection of 
equation 11, the force could be reduced or the size of the 
zone of contact could be increased.  The length of the 
rollers or the half-width of the zone could be increased to 
increase the area of the zone.  Increasing the length of the 
rollers past the width of the ribbon would complicate the 
determination of the amount of the force between the 
wheels actually being transmitted to the ribbon for the 
development of traction.  To avoid this complication, all 
of the calculations below use the length of the wheels as 6 
inches. 

Keeping all other factors such as the force and the 
length the same, we see that b is directly proportional to 
the square root of the diameter of the wheels.  To reduce 
the pressure by a factor of 2.28, the wheels would have to 
increase in diameter by a factor of almost 5.2, making 
them 104 inches in diameter. 

Another possible solution would be to change the 
material of the rim of the wheel in contact with the ribbon.  
An advantage of a ferrous alloy over a non-ferrous one is 
that the ferrous alloys have endurance limits.  If the stress 
can be kept below a given value, the fatigue life becomes 
effectively infinite.  For example, the 50% confidence 
endurance limit for stainless steel 321 is 38 ksi.  The 
confidence analysis on this alloy has not been done by this 
author, but if we assume that the scatter in the data for this 
stainless steel is similar to that of the aluminum alloy, we 
can estimate the 97.5% confidence level for the stainless 
by applying the same reduction factor to the stainless as 
seen in the aluminum alloy.  This would give a fatigue 
allowable for stainless 321 as: 

σf σf50
6.5
14

⋅=
 

or 
 

σf = 17.64 ksi 
 

The appropriate constants for stainless steel in the 
equations for b and po are: 

Est = 29 x 106 psi  

νst = .292 
Evaluating equations 11 and 12 for stainless 321, the 

maximum shear stress is found to be 8.8 ksi, matching the 
shear allowable, when the wheel diameter is 38.6 inches.  
The guess value for the wheel diameter of 20 inches is 
still too low because Young’s modulus is three times 
larger for stainless steel than that of aluminum, driving 
down the half-width of the zone of contact. 

The problem becomes one of finding the minimum 
mass solution.  Instead of changing the material, another 
solution is to increase the number of wheel pairs pinching 
the ribbon.  This has the effect of reducing the force on 



the wheels by a factor of 2 for a second set of wheels, 3 
for a third and so on, assuming that the load of the climber 
can be equally distributed on multiple wheel pairs. 

The actual wheels will be designed to have as little 
mass as possible to reduce the total rotary moment of 
inertia and mass of the drive.  However, to compare 
different configurations of numbers of wheel pairs and 
wheel material, a useful comparison is to treat the wheels 
as solid cylinders and calculate the total mass of the wheel 
sets.  Selecting from these results can prune the design 
space. 

The results for six different configurations which all 
satisfy the condition of equation 10 are summarized in 
Table 2. 

An interesting result from Table 2 is that the maximum 
contact pressure stays the same as long as the material is 
not changed between configurations.  From equations 11 
and 12, if F is reduced by a factor N and d is also reduced 
by the same factor, then b is reduced by N.  Equation 11 
shows that the result of these reductions cancels and the 
pressure is a constant.  If the contact pressure is an issue 
for the ribbon fabric, the way to reduce the pressure is to 
choose a wheel material of lower Modulus of Elasticity. 

 
Table 2: Comparison of six different wheel 
configurations 
Wheel 

material 
No. of 
wheels 

Diameter of 
wheels, in. 

Total mass 
of wheels1, 

kg, x103 

po, ksi 

Al 
6061-T6 

2 104 4.528 10.83 

Al 
6061-T6 

4 52 2.266 10.83 

Al 
6061-T6 

6 34.66 1.510 10.83 

SS 321 2 38.6 1.847 29.4 
SS 321 4 19.3 0.92 29.4 
SS 321 6 12.87 0.62 29.4 

1 Wheels modeled as solid cylinders, not practical wheel 
designs. 
 

The conclusion from this analysis is that if the ribbon 
can stand the contact pressure shown, the minimum mass 
configuration would be three pairs of stainless steel 
rollers.   

Trying to reduce the mass of the drive further by adding 
another pair of stainless rollers will reduce the diameter to 
the point where the number of revolutions required to get 
to the end of the ribbon exceeds 108 revolutions, the edge 
of the fatigue data.  Also, the rotational velocity of the 
wheels increases as the diameter decreases for a given 
linear velocity of the climber on the ribbon.  This effect 
adds dynamic stress components that have to be taken into 

account in the fatigue analysis of the wheel and the 
maximum speed capability of the motors and other drive 
elements.  At a climber cruising speed of 200 km/hr, the 
wheels in the three-pair stainless drive train are rotating at 
3246 RPM. 

The three-pair stainless rollers may work out to be 
practical in the sense that the force required for traction is 
greatest near the earth’s surface where the speed of the 
climber is lowest.  Once the pull of gravity drops off as 
the climber gains altitude, the force pinching the ribbon 
can be reduced to reduce the stress in the zone of contact.  
Subsurface stresses caused by increased traction 
requirements at lower altitudes will trade off with 
dynamic stresses as the wheel rotates faster at higher 
altitudes.  Only a complete acceleration profile and wheel 
stress analysis will answer some of the open questions. 

The mass shown for any of the wheel configurations is 
far greater than the budgeted mass for the climber’s 
traction drive system of less than 233 kg.  The next 
question to address is whether a simplified wheel design 
(short of a complete optimization analysis) can fit within 
the mass budget. 

Going back to the axle analysis, if there are two pairs of 
wheels the force on the axles is reduced by a factor of 2.  
Redoing that calculation gives an axle shaft diameter of 
3.78 inches.  Using this number, the simplified wheel 
layout can be created as shown in Figure 6.  Other 
dimensions in the wheel drawing are educated first 
guesses. 

The mass of the wheel shown in figure 6 is 59.6 kg.  A 
drive train with four of these wheels has a mass of 238.4 
kg, still above the target before the mass of any other 
component is included. 

Three pairs of wheels reduces the force on the axles 
further and allows the axles’ diameter to become 3.31 
inches.  Figure 7 shows the layout for the three-pair 
simplified wheel. 

The mass of the wheel shown in figure 7 is 35.5 kg.  Six 
of these wheels add up to 213 kg.  This number is still too 
large for the mass of the wheels alone.  Given the masses 
of the axles, compression actuators, couplings and 
structures required to hold the climber together, the 
wheels have to be reduced in mass considerably before 
the climber mass budget can be satisfied.  

6. Conclusion 
The conclusion to draw from this analysis is that the 

total mass of the drive train from these simplified 
calculations and conceptual designs is not orders of 
magnitude too high, but it will require a lot of detailed 
analysis and creative design work to package the drive 
train into the desired mass budget.  The same 
considerations of fatigue and traction apply to the rollers 
of the track and roller drive.  If it is this difficult to get a 



pinched roller drive within the desired mass budget of the 
climber, the track and roller design is even more difficult. 

Before this work can be finalized, experimental data on 
the coefficient of friction between the ribbon and various 
roller materials is necessary. 

 
 

 
 
Figure 6: Simplified wheel layout for the two-pair 
stainless wheel climber drive.  All dimensions in 
inches. 

 
   

 
 
Figure 7: Simplified wheel layout for the three-
pair stainless wheel climber drive.  All 
dimensions in inches. 
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